850 research outputs found

    Plans for the LIGO–TAMA joint search for gravitational wave bursts

    Get PDF
    We describe the plans for a joint search for unmodelled gravitational wave bursts being carried out by the LIGO and TAMA Collaborations using data collected during February–April 2003. We take a conservative approach to detection, requiring candidate gravitational wave bursts to be seen in coincidence by all four interferometers. We focus on some of the complications of performing this coincidence analysis, in particular the effects of the different alignments and noise spectra of the interferometers

    Feasibility of Measuring the Shapiro Time Delay over Meter-Scale Distances

    Get PDF
    The time delay of light as it passes by a massive object, first calculated by Shapiro in 1964, is a hallmark of the curvature of space-time. To date, all measurements of the Shapiro time delay have been made over solar-system distance scales. We show that the new generation of kilometer-scale laser interferometers being constructed as gravitational wave detectors, in particular Advanced LIGO, will in principle be sensitive enough to measure variations in the Shapiro time delay produced by a suitably designed rotating object placed near the laser beam. We show that such an apparatus is feasible (though not easy) to construct, present an example design, and calculate the signal that would be detectable by Advanced LIGO. This offers the first opportunity to measure space-time curvature effects on a laboratory distance scale

    Self-dual codes in the Rosenbloom-Tsfasman metric

    Get PDF
    This paper deals with the study and construction of self-dual codes equipped with the Rosenbloom-Tsfasman metric (RT-metric, in short). An [s, k] linear code in the RT-metric over Fq has codewords with k different non-zero weights. Using the generator matrix in standard form of a code in the RT-metric, the standard information set for the code is defined. Given the standard information set for a code, that for its dual is obtained. Moreover, using the basic parameters of a linear code, the covering radius and the minimum distance of its dual are also obtained. Eventually, necessary and sufficient conditions for a code to be self-dual are established. In addition, some methods for constructing self dual codes are proposed and illustrated with examples

    A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates

    Get PDF
    Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circumbinary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35,383 spectroscopically confirmed quasars in the photometric database of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modeling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PTF and the Catalina Real-Time Transient Survey (CRTS). Assuming that the observed periods correspond to the redshifted orbital periods of SMBHBs, we conclude that our findings are consistent with a population of unequal-mass SMBHBs, with a typical mass ratio as low as q = M2/M1 ~ 0.01.Comment: MNRAS (accepted), new section 4.

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
    corecore